차수가 높은 다항식 인수분해하기

2021. 3. 3. 12:12기본수학/문자와 식

차수가 높은 다항식 인수분해하기

먼저 이차방정식의 인수분해를 다시한번 살펴보면

x2+abx+b2=(x+a)(x+b)

(ax)2+2abx+b2=(ax+b)2

위와같이 인수분해 된다는 성질을 알고 있습니다.

 

그렇다면 이차방정식 이상으로 차수가 높은 다항식은 어떻게 인수분해를 할까?

다음의 예제를 가지고 인수분해를 해봅시다.

 

예제1)

x4+5x3+4x+20 를 인수분해하세요.

------------------------------------------------------------

먼저 공통 인수로 묶어낼 수 있는것이 있느지 살펴봅니다.

앞의 두 항 x4+5x3에서 x3을 공통 인수로 묶어낼 수 있을것 같습니다.

 

=x3(x+5)+4x+20

 

그다음은 뒤의 두 항에서도 공통인수로 묶어낼 수 있는것이 있는지 살펴봅니다.

역시 뒤 두 항에서도 4를 공통인수로 묶어낼 수 있을것 같네요

 

=x3(x+5)+4(x+5)

 

이렇게 공통인수로 묶어내고나니 (x+5)라는 공통인수가 생겼습니다.

이 공통인수를 하나로 묶고 나머지 인수들을 묶어주면

최고차항이 4차인 다항식의 인수분해가 끝이납니다.

 

=(x3+4)(x+5)

 

 

예제2)

(x2+x6)(2x2+4x) 를 완전히 인수분해하세요.

------------------------------------------------------------

우선 언뜻 보기에 인수분해가 되어있는것 같이 보입니다.

하지만 더 인수분해가 가능해 보입니다.

문제에서 이야기한것과 같이 식을 완전히 인수분해 해봅시다.

 

먼저 첫번째 가로안에 있는 식(x2+x6)을 보면 이차방정식의 인수분해를 사용하여

인수분해를 하면 될것 같습니다.

더해서 가운데 상수 1이되고 곱해서 -6이되는 두수를 찾으면 간단하게 인수분해가 가능할것 같습니다.

두 수는 +3, -2입니다. 그럼 두 상수를 에 대입하여 첫번째 가로항을 인수분해 해봅시다.

 

=(x+3)(x2)(2x2+4x)

 

다음으로 두번째 가로항에서 공통인수를 찾아보겠습니다.

2x를 공통인수로 묶어낼 수 있을것 같습니다.

그럼 두번째 가로항까지 인수분해를 해보도록 하겠습니다.

 

=(x+3)(x2)2x(x+2)

 

이 식을 보기좋게 다시 정리해보면 다음과 같이 정리 할 수 있습니다.

 

=2x(x+3)(x2)(x+2)

 

 

 

 

'기본수학 > 문자와 식' 카테고리의 다른 글